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ABSTRACT
More companies have been moving to the cloud recently, due
to the several advantages that cloud provides such as elastic-
ity. Elasticity allows companies to acquire or release com-
putational resources based on their needs, without human in-
tervention, with the help of the auto-scaler mechanism. The
most common one is the reactive auto-scaler which is very
limited and sometimes ineffective since SLA are violated and
resources are underutilized. The alternative is the predictive
auto-scaler that forecasts the workload of VMs in order to
be prepared before the demand occurs. Microsoft Azure and
Google Cloud don’t provide this tool and only recently Ama-
zon AWS start offering it. The proposed solution aims to ver-
ify if the combination of three different machine learning al-
gorithm (ARIMA, LSTM and Random Forest) can forecast
the VM workload, in terms of CPU metric, better than each
of the individually algorithms. The results have proved that
the combination of the algorithms, in three different strate-
gies, provided better results than each of the individual algo-
rithms.
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INTRODUCTION
Since the cloud since offers elasticity, companies are deploy-
ing their applications in there, which allows them to dynami-
cally acquire and release computational resources depending
on the needs.
To acquire or release computational resources dynamically, it
is necessary to do it without human intervention, otherwise it
would imply one of the following two things:

• Over provisioning: which would incur extra costs and an
under-utilization of the available resources [23].

• Under provisioning : which would have an impact on the
performance and violation of the Service Level Agreement
(SLA) [23].

To provide elasticity and comply with the Quality of Service
(QoS) requirements, major cloud platforms like Amazon
AWS, Microsoft Azure and Google Cloud offer the auto-
scaling mechanism. This mechanism has four options, which
are: deploy VMs, shutdown VMs, add more resources to
VMs or remove resources from VMs. The most popular one
is the reactive auto-scaling and it’s a simple mechanism.
The way it works is to do a pre-determined action when a
defined threshold value is crossed, for example deploy a
new instance when the CPU value of the virtual machine
crosses the 70%. However, sometimes is not very efficient,
mainly because of its reactive nature. Many problems arise
with this approach, for instance, in the latter example a new
instance will be deployed after the threshold is reached but
the new instance might only be utilized for one request that
uses 5% of CPU. This means that there was not a need to
deploy a new instance, because the other one could handle
it without compromising the QoS. Other problem that could
arise with the latter example is that suddenly the demand
starts to rise in a relatively fast way that the system gets
overloaded and, since virtual machines instantiation takes
time, the performance is affected in such a bad way that users
of the application might leave [3].
Both problems lead to unnecessary costs that, with today’s
technology, could be solved since the workload often follows
patterns. If we could predict that future demand is not high
enough to deploy a new instance or that is high enough to
have virtual machines ready to respond to the incoming
request, then we could maximize the use of the resources
and comply with SLA, meaning a reduction in costs and
energy. The mechanism that could do this is called predictive
auto-scaler, which looks to the history of the workload to
predict the future workload to make proactively decisions
before the workload change.
The real challenge is forecasting the future workload with
accuracy enough that is better than the common reactive
model.
Several studies have been conducted in order to find the
best combination of metric and machine learning algorithm
that could predict the workload, however there is a lack of
unanimously between the researchers, mainly because some
combinations are great in a set of conditions, but not to good
on other [14]. In addition, Microsoft Azure and Google
Cloud don’t offer any tool that could predict the workload
of Virtual Machines and was only in November of 2018 that
Amazon AWS presented theirs, however there is not any
research about its performance. This leads to companies to



implement their own predictive auto-scaler in case they want
to reap the benefits of it.

Objectives
Since previous research shows that proposed solutions to pre-
dict workflow perform reasonable in a set of conditions, but
unsatisfactory on other, we decided to verify if a combination
of 3 different Machine Learning algorithms can outperform
the prediction of each one of them alone. In order to achieve
the desired goal, this research focused on:

• Find a dataset that contains CPU usage(%) of Virtual Ma-
chines.

• Develop 3 different machine learning models capable of
predicting the CPU usage(%).

• Develop different strategies to implement different sys-
tems. By different strategies we mean different combina-
tion of the predictions in order to maximize the accuracy.

BACKGROUND
In this section we present the Background related to our re-
search, namely concepts about Auto-Scaler, Virtual Machine
(VM) workload prediction, Time Series and the chosen algo-
rithms (ARIMA, LSTM and Random Forest)

Auto-scaler
In several occasions, applications being executed in cloud
computing environments will have to scale their computing
resources when encountered with different workload require-
ments. The auto-scaling problem for applications can be de-
fined as how to, without human intervention, provision or de-
provision computing resources in order to satisfy fluctuant ap-
plication workload, while using the least amount of resources
and avoiding SLA violations [23].
The most common are the reactive auto-scalers that just re-
spond to the system status, for example, if the defined thresh-
old reaches the 70% of CPU utilization, deploy a new VM
[20]. Amazon Auto-Scaling service uses this type of auto-
scaler [23].
However, only take action when a threshold is crossed leads
to several issues, such as:

• the instantiation of new VMs is not an immediate oper-
ation and clients might notice, damaging user experience.
This can lead to users leave the application, potential fi-
nancial losses and not meeting the minimum required QoS
[3].

• if the actual CPU utilization keeps changing from 65%
to 75%, then the system keeps adding unnecessary VMs
deployment, thus possible increase in costs and damaged
QoS [20].

• unnecessary VM migration when a VM is constantly being
migrated from one physical server to other [27], which
also can damage user experience.

As we can see reactive auto-scalers are not very efficient. The
other option which is predictive auto-scaler, tries to predict

the workload so that the system is prepared before the demand
occurs, which enable SLA’s QoS targets to be met with the
least resources possible [3].

Benefits of Predicting the Workload of VMs

In case public cloud providers, private cloud owners or even
clients want to improve the efficiency of their physical/virtual
machines, they should try to predict the future workload
in order to reduce costs and maximize the use of their re-
sources.With the prediction of Virtual Machines behaviour,
several problems can be mitigated, lowering the costs and in-
creasing overall customer satisfaction. Some of the benefits
are presented below:

• Maximize resource utilization: by predicting workload,
we can estimate the minimum necessary active Physical
Machines hosting the virtual machines, thus decreasing en-
ergy costs.

• Reduce Virtual Machine migration: it’s known that mi-
grating a virtual machine takes time, Quality of Service can
take a hit and most of the times is unnecessary. By predict-
ing future workload, we can check if it was only a small
peak load and don’t do anything, or prepare the migration
of the virtual machine before the high demand occurs. hol-
idays.

• Reduce Virtual Machines instantiation: instantiating
virtual machines is not an immediate operation and end-
users might notice, leading to several problems such as
users leaving the application or poor QoS [3]. If instead of
waiting for peak loads to happen, we allocate resources in
advance, the risks of losing clients or not deliver acceptable
QoS drop.

Time Series
Time Series is a collection of data points that are placed in
a sequence by the same order they were collected, over the
corresponding period of time. This means that the order of
the data observed is crucial, unlike other type of machine
learning datasets where each data point is handled in the
same way, regardless of the place in the dataset.
Accordingly to Shumway et al. [28], we can interpret Time
Series as a stochastic process, since it is a set of observations
x1, x2 . . . of a random variable Xt, indexed by time t,
where x1 corresponds to the value of the first timestamp, x2
corresponds to the value of the second timestamp, and so on.

Autoregressive Integrated Moving Average model
Widely known as ARIMA, this model is the fusion between
the ARMA model with the Integrated component. This com-
ponent, I(d), allows the model to transform non stationary
into stationary time series, by applying one or more simple
differentiations. The order d, is the number of times the time
series will be differentiated, which typically is no more than
two. A model with order d equal to zero assumes that the
original series is stationary. A model with order d equal to



one might mean that the time series has a constant average
trend (non-stationary), so it should result into a stationary
time series after applying the differencing part. The differ-
encing part I occurs before the ARMA part, since stationarity
is essential in order to apply ARMA with greater accuracy.
[31].

Stationarity
In order for ARIMA to make predictions, the observed time
series should be stationary. This means that its statistical
characteristics don’t change over time, such as the mean, vari-
ance and covariance [31].This makes the series easier to be
analyzed by the learning model. A non-stationary time se-
ries shows seasonal effects, trends, and other structures that
depend on the time index, unlike a stationary one.

Stationarity tests
Since all the stationarity properties are hard to achieve simul-
taneously, there is a higher probability of the times series to
not be stationary.
There are several ways to verify if a time series is stationary
or not. Two of the most used methods are:

• Augmented Dickey-Fuller (ADF) : type of statistical test
developed to verify the null hypothesis that a unit root is
present. If the unit root exists, then the null hypothesis is
accepted and the series is considered non-stationary. To de-
termine the result, we need to look at the p-value of the test.
If the p-value is lower than the value of a certain thresh-
old, typically 0.05, then the test rejects the null hypothesis,
which might mean that the time series is stationary. Ad-
ditionally to the p-value, we should also look at the Test
Statistic. If the Test Statistic is less than the critical value
at 5% or even 1%, then it means that we can reject the null
hypothesis with a significance level of 5% or 1%, respec-
tively. Otherwise the null hypothesis is accepted and the
time series is non-stationary [4] [15].

• Kwiatkowski-Philips-Schmidt-Shin (KPSS) : usually
used as a complement of the Augmented Dickey-Fuller
test. This test verifies the null hypothesis of the absence
of the unit root, unlike the previous test. To determine the
result we need to also look at the p-value of the test. If the
p-value is lower than the value of a certain threshold, typ-
ically 0.05, then the test rejects the null hypothesis, which
might mean that the time series is non-stationary [15] [17].

Supervised Learning
Supervised learning is becoming more common nowadays.
In this type of machine learning, the input data of the training
data is paired with the corresponding output value to learn the
mapping function from the input to the output. The mapping
function will serve to predict the output value for a given input
value.

Ensemble Learning
Ensemble learning is a process that builds a predictive model
by incorporating several models. The idea, which the results
are well known, is that the aggregation of models tend
to improve the prediction accuracy [24]. It combines the

models, with different weights or not, so that the performance
is better than all of them alone. Analogously, when humans
want to make a difficult decision, they look for other sources
of information.
Ensemble techniques, like boosting and bagging, produce a
strong learner by grouping weak learners in order to solve
problems, like supervised learning ones.
A weak-leaner is a type of algorithm which the prediction
results are only marginally correlated with the true values, for
instance it can predict slightly better than random guessing.
A strong-learner is a type of algorithm which the prediction
results are well-correlated with the true values.

Random Forest
Random Forest is a type of Decision Trees ensemble learning
method, hence the name. Before we present Random Forest,
it is import to understand what Decision Trees are, since they
are the core of the method. Decision Tree is a relatively sim-
ple predictive model that utilizes a set of binary thresholds to
predict continuous values or rules to predict categorical val-
ues, depending if we are dealing with a regression or classifi-
cation problem, respectively. Decision trees are relatively fast
in terms of execution speed, however if it grows in complex-
ity it might lead to a loss of accuracy in unseen data and sub
optimal accuracy on training data [9]. So, in 1995, Tin Ho
[9] proposed a method with the purpose of increasing the ac-
curacy of both unseen and training data. The method was de-
nominated random decision forests and consists on following
the stochastic modeling principle and building several trees in
randomly selected sub spaces of the feature space [9]. Exper-
iments made by Ho, proved the validity of his theory, where
trees complement their predictions and improve the accuracy
if they are trained on distinct sub spaces.
This experiment led Breiman to combine his bagging ensem-
ble technique with the concept developed by Ho, and devel-
oped the well known machine learning algorithm called Ran-
dom Forests [2].
Random Forests take advantage of the bagging method to
solve the common problem of overfitting that happens with
Decision Trees, by reducing the variance without increasing
the bias. As previously described, this is accomplished by
training several decision trees in parallel and in different sub-
sets of data. Once all decision trees have been established,
the model will average the forecasts and come out with a final
value. The performance of the model can be improved with
a higher number of decision trees, however it comes with a
cost, since the higher the number of decision trees, the higher
the execution time. Different sets of hyperparameters should
be evaluated in order to achieve the results we want [2].

Deep Learning
Deep Learning is one of the most popular and promising
Machine Learning methods that has demonstrated great
accomplishments in diverse fields and applications such
as handwritten digits, speech recognition and stock market
forecasts [19]. Deep Learning involves around the use of
artificial neural networks, which are based on the actual
communication and computation that occurs in the brain of



animals.

Artificial Neural Networks
Artificial Neural Networks, mostly known as Neural Net-
works (NN), is a mathematical composition that can iden-
tify complex nonlinear relationships between input and out-
put data. It has been proven by the literature the efficiency
and usefulness of this computing system, especially when
the characteristics of the problems are hard to describe us-
ing physical equations [21].
Artificial Neural Networks are composed by a single input
layer, a single output layer and a defined number of hidden
layers. Each one of these layers is constituted by the most
basic unit of a neural network, the neuron. Similarly to the
human brain, neural networks is a set of many neurons wired
together with the purpose of establishing communications be-
tween them. A layer is a set of neurons grouped together
where the learning process of the neural network happens.
There are three types of layers, but only the input and output
ones are mandatory in a neural network.

Recurrent Neural Networks
Recurrent Neural Networks (RNN) belong to the family of
Artificial Neural Networks (ANN) and are specialized in pro-
cessing sequential data [25]. Contrary to most NNs, RNN
exhibit temporal dynamic behaviour because they are capable
of using their internal memory in order to process sequential
data of variable magnitude. This makes RNNs well-suited for
time series prediction.

Long Short-Term Memory
Long Short-Term Memory, mostly known as LSTM, is a type
or RNN architecture which have been proven by the literature
to outperform other type of RNNs on plentiful temporal pro-
cessing tasks [8].
Hochreiter and Schmidhuber developed LSTM in 1997 [10],
with the purpose of overcoming one of the main limitations
of RNNs, which occurred during the requirements of learning
long-range time dependencies [26]. Nowadays, LSTM is not
only capable of learning long-term dependencies, but also is
widely used of solving a variety of problems, including time
series forecasting.
LSTM is a variant of RNNs that has a way of carrying in-
formation across many timesteps [5]. Francois Chollet de-
scribed this additional feature with an easy to understand
metaphor:
”Imagine a conveyor belt running parallel to the sequence
you’re processing. Information from the sequence can jump
onto the conveyor belt at any point, be transported to a later
timestep, and jump off, intact, when you need it. This is
essentially what LSTM does: it saves information for later,
thus preventing older signals from gradually vanishing dur-
ing processing” [5].

RELATED WORK
In this section we present the studies that most influenced this
research and the main conclusions we reached regarding the
metrics and algorithms.

Metrics
Several attempts have been made in order to estimate future
resources to deal with the demand, however there is not a
consensus in which metrics should the algorithms have as
an input. All the methods presented here differ in terms of
what is their input. Most methods focus on a combination of
these three metrics CPU, Memory and RAM usage. CPU is
a common metric in almost all the methods. In [12], Jheng
et al tried to predict the workload computation with the aver-
age of CPU, Memory and RAM utilization of a Virtual Ma-
chine. In [29], Tseng et al tried to predict CPU, memory
utilization and energy consumption, based on historical data
of those metrics. In [27], Sato et al proposed predicting re-
source usage based on historical CPU and RAM metrics, in
proportion to the number of accesses. In [20], Radhika et
al proposed a method that gathers CPU and RAM utilization
from a Virtual Machine to predict the workload. In [30], Xue
et al present “PRACTISE” which is a neural network-based
framework to predict future loads, peak load, and when those
are going to happen. They extracted data from IBM data cen-
ters and retrieved 4 metrics: CPU, memory, disk and network
bandwidth. A difference between these methods and the next
two, that also collect CPU, is that the next two ones focus
on collecting data from a group of Virtual Machines instead
of just a single virtual machine. In [22], Qiu et al criticize
other approaches that estimate demands based on historical
data from a single Virtual Machine. Since the cloud is a com-
plex network system of VMs, there is a temporal and spatial
correlation between a group of VMs that those models ne-
glect. Besides that, due to the high veracity data in data sets,
there is a vast amount of information that is incomplete and
can lead to inaccurate prediction if it’s based on only one Vir-
tual Machine history data. In [22], Qiu et al focused on CPU
utilization, but their approach could also be applied to other
metrics, such as memory utilization. Also, in [13], they show
that prediction based on workload from individual VMs tends
to provide inaccurate results, due to the fact that the work-
load is noisier and more random, thus less predictable. In
addition, they found that VMs that are configured to cooper-
ate on an application, have workloads that tend to vary in a
relatable way. As a result, they use this to filter noisy from
individual VM’s data, thus improving prediction accuracy.
In [11], Iqbal et al conducted a study where they observed
that the behaviour of the same type of VMs produces differ-
ent performance on the same workload. They claimed that
the usual machine-learning models to predict VM’s perfor-
mance would become obsolete, once the performance varies,
needing to be retrained in order to predict future required
resources. So, they proposed an algorithm that learns from
some resource configurations that are maintained, regardless
of VM’s performance, such as arrival rate and response time.

Machine Learning Algorithms
Once the metrics are gathered, we can exploit the character-
istics of the workload by using machine learning techniques
in order to find patterns and predict future workload. Simi-
lar to the metrics, there isn’t an agreement in which machine
learning algorithm to use, having the researches focused on
different algorithms. In [12], Jheng et al tried to predict the



workload using Grey Forecasting model. They did an exper-
iment where results show that grey algorithm is appropriate
for tendencies that continually increase or decrease, however
when the tendency becomes more complex, it is not suitable.
Despite this conclusion, it’s not very clear the details in which
the experiment occurred nor how other algorithms would per-
form under the same conditions. In [29], Tseng et al used a
Genetic Algorithm to predict the future workload. They did
an experiment where the proposed Genetic Algorithm is com-
pared with the Grey Forecasting model. Both algorithms try
to predict CPU and memory utilization on two type of ten-
dencies, one being stable raise and fall, while the other is an
unstable fluctuation. The experiment consists of 30 time slots
(1 slot = 1hour) and since algorithms like GA need historical
data to train the model, the first 2 slots are for collecting data.
However only at the 19th time slot is the GA capable of find
optimal solutions. They concluded that the GA model has a
superior prediction accuracy compared to the Grey model, be-
cause grey model prediction is based on historical tendency,
it fails to predict at the turning point of it [29]. In [27], Sato
et al proposed an autoregressive model for predicting the re-
source usage, based on the history of CPU and RAM usage,
in proportion to the number of accesses. However, no exper-
iments were done to see how the algorithm would perform
neither comparison with other algorithms. In [20], Radhika
et al used a deep learning technique termed Recurrent Neu-
ral Network with Long Short-Term Memory (RNN-LSTM) to
predict CPU/RAM utilization. They claim that the algorithm
can predict with accuracy in case of any variance and that,
compared to timeseries techniques like ARMA and ARIMA,
this method gives better results for predicting future work-
load. However, they didn’t provide any experiment where the
they compared the proposed algorithm with any other.
In [3], Calheiros et al chose the time-series model ARIMA.
Since this model has been successfully utilized for time se-
ries predictions and that workload typically follows time-
dependent patterns, this model gives good expectations.
Workload patterns may vary depending on what is being pro-
cessed, so they focused on trying to find patterns in web re-
quests, because previous research observed that web work-
loads tend to present strong autocorrelation. However, this
model may not be effective if the workload they are trying to
predict is not well known nor time-dependent, thus and ac-
cordingly to them, the model needs a strong knowledge about
the application workload behaviour. The workload estima-
tion is given at a one time-interval in advance. This interval
should be long enough for VMs to be instantiated if needed
and without compromising the QoS. They did an experiment
where they train the model with 3 weeks of data and try to
predict the next one. Although they only provided one exper-
iment, the results show that the method achieves good accu-
racy.
In [22], Qiu et al proposed a deep learning model that can
learn from all VM’s workload data in the cloud, claiming
that this model is more powerful than others that learn work-
load data from a single machine, because the workload data
is stochastic and non-linear. They did an experiment where 8
days of CPU data from 1000 VMs were used for training, in
order to predict the next 2 following days. Other 4 prediction

models were also used for comparison, including ARIMA,
where the deep learning model performed 1.3% better in a
short time interval and 2.5% better in several time intervals
(5min, 15min, 30 min). The improvement is more significant
in longer time intervals because comparative models, such
as ARIMA and EWMA, predict better in shorter time inter-
vals. In [13], Khan et al , once the temporal correlations
are identified, they use a Hidden Markov Model to predict
different co-clusters and future workload of VMs. They did
an experiment based on 21 days of CPU utilization, where
they trained the model with 17 days of data and predicted the
level of workload of the next 4 days. In this experiment, they
made a comparison with some algorithms, however they are
from the last decade, therefore should not be considered. The
experimental results on 1212 VMs, showed that its overall
prediction accuracy ranges between 60% to 95% on a level
3 workload, 80-85% on a level 4 workload and 75% to 80%
level 5 workload.
In [6], Cortez et al, they mentioned that ARMA/ARIMA
models are not that effective in predicting complex be-
haviours and that have difficulties in predicting patterns that
not have appeared before. In the real world, the probability of
unexpected events happen is high so a model that is based on
past information, will have difficulties in forecasting future
results. Therefore, and since neural network models also rely
on past information, they added an online updating module to
give agile responses to suddenly changes in workload. They
accomplished this by monitoring errors on the prediction per-
formance, and if they happen, the neural network model is
retrained. Since the computational cost of the neural network
training and prediction is low, the model can be retrained on-
line quickly at low cost. They did an experiment where they
used 3 methods for comparison: ARIMA model, BaselineNN
and the PRACTISE framework proposed. They used the first
14 days for training the models and the next 46 days for eval-
uating the prediction accuracy. All 4 metrics were predicted
(CPU, memory, disk and bandwidth). The results show us
that: PRACTISE model consistently achieves less than 12%
of false negatives across all metrics and that is consistently
accurate when compared to the other 2 models on the CPU,
memory, disk and network bandwidth metrics. They also
showed a more challenging case where the trends of period-
ical pattern change, and again, PRACTISE outperforms the
other 2 models, mainly because of the online updating com-
ponent.

To help cloud users find a workload predictor that is the best
one for their cloud activity, in [14], Kim et al conducted an
experiment with 21 predictors where they evaluated them in
terms of accuracy for job arrival time prediction in four real-
istic workload patterns, that are presented in Figure 1.
The evaluation results were measured with MAPE (Mean Ab-
solute Percentage Error), and they show that all the four work-
load patterns have different best predictors, meaning that it’s
important to have strong knowledge about the workload be-
fore choosing a prediction algorithm and that there isn’t an
universally best algorithm. Results are shown in Figure 2 .

From the Related Work, we concluded that the research
around predictive auto-scaler is very ambiguous. There isn’t



Figure 1. Cloud Workload Patterns. X-axis represents time and Y-axis
represents the number of requests [14]

Figure 2. MAPE Results of Workload Predictors Under Four Different
Workload Patterns. (WL: Workload, GR: Growing, OO: On/Off, BR:
Bursty, RN: Random) [14]

a clear reason on why each study chose the respective metrics
and there isn’t much useful information about the real impact
of the metrics, besides CPU usage. Also, there isn’t a con-
sensus round which machine learning algorithm is the best.
A reason could be that the workload may present several pat-
terns, and some machine learning are better for one and worse
for other. Other reason could be that some machine learning
methods work better with a set of metrics and perform inac-
curate with others.

CPU PREDICTION SYSTEM
In this research, we propose a system to predict future CPU
usage (%), using ARIMA, LSTM and Random Forest. We
chose these algorithms for several reasons. One of the reasons
is because the literature not only has shown that ARIMA,
LSTM and Random Forest have performed very well in time
series forecasting but also they are very different. And since
these algorithms are different, they will eventually perform
better in a set of conditions and worse on others. For exam-
ple, ARIMA can not deal with nonlinear relationships and
LSTM has a difficult time dealing with linear relationships.
Not only time series might have both linear and non-linear
relationships, but also it is hard to identify them. Also, due to
other influential factors, the final selected model might not be
the best one for future use, which gives more power to using
this type of approach. By combining different models, we in-
crease the probability of identifying different patterns, which
will eventually increase forecasting accuracy. We expect that
the combination of these 3 algorithms will complement each
other. This section addresses the architecture and implemen-
tation of the latter stated solution.

Dataset
During the implementation of this research, three datasets
from Materna Data Centers in Dortmund were considered
[1]. The datasets contain the performance metrics of three
distinct Virtual Machines and each dataset has a timespan of
around a 1 month, divided in timesteps of 5 minutes. The
workloads in the traced VMs originated from highly critical
business applications of known companies.

Pre-Processing
We decided to choose the CPU usage in terms of percentage
as the only metric to forecast. We reached this conclusion for
three reasons. First of all, the CPU metric is by far, the most
used metric in the Related Work. The second reason is that
there is no consensus on the best or set of best metrics. And
finally, more than one feature would bring an higher level of
complexity to the three machine learning algorithms, which
could jeopardize the delivery and results of this research.
After the removal of the non-chosen metrics, we are left with
the percentage of CPU in each timestep, ordered by time.

Training set, Validation set and Test set
In order to acquire the best possible machine learning model,
we separated the dataset in three parts. The three parts are
the training set, validation set and testing set. The model is
fit on the training set with certain hyperparameters, and the
fitted model is used to predict the responses on the data of the
validation set [7]. This allowed to make appropriate changes,
namely tune in the hyperparameters to then repeat the previ-
ous process. This method prevents overfitting and underfit-
ting and opens room for improving the accuracy.
The division of the datasets was made accordingly:

• Training set: From 0% until 60% of dataset.

• Validation set: From 60% until 80% of dataset

• Testing set: From 80% until 100% of dataset

After the hyperparameters were chosen, the model was then
trained with the training set plus validation set, in other
words, it was trained with the first 80% of the data so that
the final model is reached. The final model was then evalu-
ated on the test set, which contains data that the model never
seen. This provided an unbiased sense of model effectiveness
[16].

Sliding Window Method
Since one of the purposes of this research is to predict the %
of CPU, then it becomes clear that we are dealing with a re-
gression problem. Although time series forecasting is not a
supervised learning problem, it can be framed as one so that
LSTM can forecast. The way to do it, is by applying the slid-
ing window method. All we need to to do is use previous
time step as input variable and the next time step as output
value. Additionally, this approach also allows to choose be-
tween one or multi step forecast, in other words, how far in
the future we want to predict.

Performance Measures



It is necessary to evaluate the performance of each of the al-
gorithms in order to open space for improvement. It became
clear in the Background section that ARIMA, Random Forest
and LSTM are very different algorithms, therefore each one
of them needs a different treatment in order to tune in the hy-
perparameters. However, the performance measures will be
the same for all of them, which is the Mean Absolute Error
(MAE). This metric is negatively oriented, which means that
a lower value represents a more accurate prediction.
An absolute error is the difference between a forecasted value
and the respective true value. To verify the overall quality of
a prediction model, it was used the MAE which does the av-
erage of all absolute errors between the predicted values and
the corresponding true values.

MAE =
1

n

n∑
i=1

|ypredicted − ytrue| (1)

Architecture
The proposed solution consists on a system that has the 3 cho-
sen algorithms running in parallel, where one of them is the
primary algorithm. The primary algorithm is the algorithm
which the predictions are sent to the auto-scaler. There is
also a fixed strategy, which we explain in the next section,
that chooses the primary algorithm at each timestep. At each
timestep, the 3 algorithms will be retrained with the true value
of that timestep, in order to predict the next one.

Figure 3. Proposed solution architecture using BPMN

Hardware and Software used
All code and algorithms were developed using Python 3.7.6
because it is one of the most powerful and versatile program-
ming languages. Python was run on the Jupyter Notebook
which is a very popular open-source web application amongst
data scientists.

The hardware used for running the developed solution has the
following specifications:

• System Model: ASUS X555LJ x64-based PC

• Processor: Intel(R) Core(TM) i7-5500U CPU @
2.40GHz, 2397 Mhz, 2 Core(s), 4 Logical Processor(s)

• RAM: 8 GB

RESULTS
This section is dedicated to present the results obtained from
the application of our system in 3 timeseries. We explain how
we tuned the hyperparameters in each of the algorithms, as
well the proposed strategies of the system in order to choose
the primary algorithm at each timestep.

Baseline
Before the start of making predictions, it was important to es-
tablish a baseline to check how a common-sense approach
would perform. Occasionally, common-sense approaches
turn out to be so accurate that they are hard to beat, which
would make a machine-learning solution pointless [5]. Since
common sense derives from humans, it carries a lot of valu-
able information that a machine-learning model does not con-
tain. The common-sense approach served as way to verify the
performance of the machine learning algorithms proposed.
Analogously to the machine learning algorithms, the common
sense was evaluated with MAE. The common sense approach
utilized consists on finding what is the average value on the
training set plus validation set and then use that value as the
forecasted value to all the true values in the testing set.
The calculated baselines for the three different timeseries are
established below.

• TimeSeries 1: 7.1

• TimeSeries 2: 5.8

• TimeSeries 3: 5.0

Stationary tests
Once we had the data ready to be fitted on the model, it was
necessary to verify if the time series were stationary or not,
due to the reasons explained in the Background. For this, the
KPSS and ADF tests were used. ADF test on all three datasets
proved that the time series were stationary, while the KPSS
test on all three datasets gave the opposite result. We con-
cluded that the time series are difference stationary, so they
need to be differencied in order to be stationary.

Hyperparameters
Tuning in the hyperparameters consisted on repeatedly mod-
ify the hyperparameters, train the model, evaluate it on the
corresponding validation set and repeat again until we were
satisfied with the results.
Before tuning the hyperparameters, we decided that would
be better to only forecast what is the percentage of the CPU
in five minutes, in other words a one timestep forecast. We
reached this conclusion due to several reasons. The first one
was because the model was already divided in timesteps of
five minutes. The second one it was because the models
would perform worse in terms of accuracy the farther in time
we forecast. The third one it was due to the fact that fore-
casting one timestep means that we predict what is going to
be the percentage of CPU necessary in five minutes, and five
minutes should be more than enough time to apply horizontal
or vertical scaling, for instance it takes less than 100 seconds
to deploy a new Amazon EC2 [18].



ARIMA
The algorithm was trained on the training set with different
combinations of the p, d and q hyperparameters values where
the values ranged from 0 to 5. After the training, the per-
formance of the model was evaluated on the validation set
using MAE, and the model that had the lowest MAE be-
came the chosen one. Below, we show the conclusions we
reached from the experimentation, namely the best combina-
tion of values of p, d and q for the three timeseries together
with the corresponding graphs comparing the forecasted val-
ues against the predicted values for each timeseries

• TimeSeries 1: The algorithm performed better on the val-
idation set with the hyperpameters (1, 1, 1) as (p, d, q) and
resulted on a Mean Absolute Error of 3.98 in the test set,
which is a roughly 44% increase in performance, compared
to the baseline.

• TimeSeries 2: The algorithm performed better on the val-
idation set with the hyperpameters (1, 1, 1) as (p, d, q) and
resulted on a Mean Absolute Error of 2.75 in the test set,
which is a roughly 52% increase in performance, compared
to the baseline.

• TimeSeries 3: The algorithm performed better on the val-
idation set with the hyperpameters (1, 1, 0) as (p, d, q) and
resulted on a Mean Absolute Error of 1.96 in the test set,
which is a roughly 60% increase in performance, compared
to the baseline.

LSTM
It is not easy to configure neural networks since there is no
good theory on how to do it. But we decided to explore differ-
ent configurations and recommendations made in François’s
Book [5]. It consisted on trying different epochs, number of
layers, number of neurons per layer and other procedures in
order for the model to be prone to generalization and prevent
overfitting and underfitting. Underfitting usually happens at
the beginning of training, when the model still has a lot of
potential for progress because the model hasn’t found any
relevant patterns on the data [5], and can be solved by in-
creasing the number of training epochs, neurons and hidden
layers. Overfitting usually happens when the model is start-
ing to learn patterns that belong to the training data, however
they are useless when it comes to new data [5], and can be
solved by decreasing the hyperparameters values.
We were also aware of the phenomenon called information
leaks [5], which prevented us from overfitting the model on
the validation set by not leaking too much information from
the validation set, in other words, we chose a model that could
perform better on new data and not the best model on the val-
idation set. Therefore, generalization is the goal and it is usu-
ally manifested when the training and validation loss decrease
and stabilize at the same point.
Additionally to the hyperparameters, several sliding window
method were tested and we concluded that the algorithm
would performed better, on all models, when the input was
two and the output was one, meaning that the algorithm
would focus on the two previous timesteps to forecast the next
one.

Below, we show the conclusions we reached from the exper-
imentation, namely the combination of the hyperparameters
values together with the corresponding graphs comparing the
forecasted values against the predicted values for each time-
series.

• TimeSeries 1: The chosen hyperpameters of the LSTM
for the first Timeseries were : Two LSTM layers with relu
as activation function with 75 and 35 neurons correspond-
ingly and 10 epochs. The last layer is a Dense layer which
is used for outputting the prediction. In terms of perfor-
mance, there was a 45% increase compared to the baseline,
since the Mean Absolute Error in the test set is 3.95.

• TimeSeries 2: The chosen hyperpameters of the LSTM
for the second Timeseries were : Two LSTM layers with
relu as activation function with 130 and 65 neurons corre-
spondingly and 7 epochs. The last layer is a Dense layer
which is used for outputting the prediction. In terms of
performance, there was a 55% increase compared to the
baseline, since the Mean Absolute Error in the test set is
2.61.

• TimeSeries 3: The chosen hyperpameters of the LSTM for
the third Timeseries were : Two LSTM layers with relu as
activation function with 150 and 100 neurons correspond-
ingly and 8 epochs. The last layer is a Dense layer which
is used for outputting the prediction. In terms of perfor-
mance, there was a 60% increase compared to the baseline,
since the Mean Absolute Error in the test set is 1.98.

Random Forest
Similarly to the approach used in ARIMA, different values
of n-estimators, which represents the number of trees is the
forest, were tested. The model that had the lowest MAE on
the validation set was the chosen one.

• TimeSeries 1: The algorithm performed better on the val-
idation set with an n-estimators value of 105. The Mean
Absolute Error on the test set equals to 4.14, which is
a roughly 42% increase in performance, compared to the
baseline

• TimeSeries 2: The algorithm performed better on the val-
idation set with an n-estimators value of 96. The Mean
Absolute Error on the test set equals to 3.23, which is
a roughly 44% increase in performance, compared to the
baseline

• TimeSeries 3: The algorithm performed better on the val-
idation set with an n-estimators value of 101. The Mean
Absolute Error on the test set equals to 1.97, which is
a roughly 60% increase in performance, compared to the
baseline

As we can see, the LSTM model had the lowest MAE on
2 timeseries and Random Forest on 1. These are the Mean
Average Values that the strategies have to outperform in order
to be to worth combining the different algorithms in a system.

Strategy for combining the predictions
We now explain the three strategies that we created in order
to take advantage of all the three machine learning algorithms



and the correspondingly results. Regardless of the strategy
there are some things that all have in common, namely, at
every prediction there is one primary algorithm and two sec-
ondary algorithms, but the only prediction that counts is the
one that comes from the primary one, which is sent to the
auto-scaler. Depending on the strategy, the secondary algo-
rithms will have a chance to trade position with the primary
algorithm.
With this is mind, we propose three strategies with the goal of
having as the primary algorithm, the one we believe is going
to predict with the best accuracy the next timestep.

• Strategy 1: The first strategy is a simple one. At every
timestep, we calculate the absolute error of each algorithm
prediction. The one that has the lowest absolute error is
selected to be the primary algorithm for the next timestep.
Behind this strategy there is a belief that an algorithm will
perform better in the next timestep than the others, if it was
the best predictor at the current timestep.

• Strategy 2: The second strategy consists on first discover-
ing which algorithm got the lowest MAE on the validation
set and call him the privileged one. Then, at every timestep,
we check who got the lowest absolute error. In case the
privileged one got the lowest absolute error, then he is go-
ing to be the primary algorithm for the next timestep. Oth-
erwise, if one of the remaining two got the lowest absolute
error, then it is also necessary that in the next step it has
the lowest absolute error. In other words, a non-privileged
model needs to have the lowest absolute error twice in a
row for it to become the primary predictor. Behind this
strategy there is a belief that the privileged algorithm will
perform better than the others, so it is easier for it to be the
primary predictor.

• Strategy 3: The third and final strategy consists on using
an weighted average to decide what is going to be the pri-
mary predictor in the next timestep. For each algorithm ,
the weighted average gives a 40 percent weight to the abso-
lute error of the previous timestep forecast and a 60 percent
to the absolute error of the current timestep forecast. The
algorithm that has the lowest value becomes the primary
predictor for the next timestep. Behind this strategy there
is a belief that the algorithm that predicted with more ac-
curacy in two consecutive timesteps, giving more weight
to the current timestep, will perform better than the others
at the next timestep.

Obtained Results
In this section we will present the results obtained from the
application of the strategies in each timeseries. The results
are both promising and positive since 9 of the 9 possible com-
binations of timeseries and strategies (3x3), performed better
than any individual model for each time series. In the Strategy
2, LSTM was defined as the ”privileged” model for the first
and second timeseries and ARIMA for the third one, since
these were the models that performed better on the validation
set for the correspondingly timeseries.

• Timeseries 1: In the first timeseries, the MAE to beat was
3.95. All strategies beat this value with similar MAEs,

namely 3.83 ,3.85 and 3.84 correspondingly, which gives
an average of 3% increase in performance. The dominant
algorithm at all three strategies was LSTM, which was ex-
pected since the MAE to beat was produced by this algo-
rithm. However, ARIMA made a similar MAE (3.98) and
got the least amount of share as being the primary algo-
rithm, while Random Forest got the worst MAE (4.14) but
made a close call as being the dominant primary algorithm.
In the best strategy for this timeseries, which was the strat-
egy 1 with a MAE of 3.83, LSTM got a 38% share as be-
ing the primary algorithm, following by a 35% by Random
Forest and finally 27% of ARIMA. All in all, it was a very
balanced share of the primary place.

• Timeseries 2: In the second timeseries, the MAE to beat
was 2.61, also provided by LSTM. All the 3 strategies beat
the previous value and developed a MAE of 2.52, 2.57 and
2.54, respectively, which is an average of 2.7% increase in
performance. The dominant algorithm at all three strate-
gies was LSTM, which was expected since the MAE to
beat was produced by this algorithm. If we look at the best
strategy in this timeseries, we can see that LSTM got 42%
as being the primary algorithm, following by a 29% share
of both the other two strategies. Again, it was a fairly bal-
anced share of the primary place.

• Timeseries 3: The final timeseries had the lowest and
most difficult MAE to beat, which was 1.96, outputted by
ARIMA. All strategies beat this value with the exact same
MAE of 1.94, which is a 1% increase in performance. Be-
sides the strategy 2 where clearly a model, in this case
ARIMA, is going to outperform the other two because it
is ”the privileged one”, in the other two strategies Random
Forest was able to be the primary algorithm more time than
any previous model in any previous timeseries, with a 42%
share in the first strategy and 46% in the third one.

Finally, in Table 1, we provide information that summarizes
our investigation and gives more details about the results of
the experiment.

CONCLUSIONS
The Information Age is elevating the standards in terms of
computation requirements, which translates in a constant look
for innovation and an efficient use of resources. This research
focused on improving previous solutions related to the Auto-
Scaler mechanism, namely the predictive component. Auto-
scaler is a mechanism that allows applications to, without hu-
man intervention, increase or decrease computing resources
depending on the workload. It can be divided in reactive auto-
scaler and predictive auto-scaler, where the main difference
is that the reactive one simply follows pre-determined rules
while the predictive one tries to forecast future demand. The
literature has already provided the flaws regarding the reac-
tive auto-scaler and why the predictive auto-scaler might be
a better idea. Several studies have been conducted in order
to prove the latter statement, which gave promising results,
however predictive auto-scaling seems to be in early stages
since Microsoft Azure and Google Cloud don’t supply this
tool. The only major cloud platforms that offers this service
is the Amazon AWS, but the service is less than 2 years old



TimeSeries1 TimeSeries2 TimeSeries3
Baseline
MAE 7.1 5.8 5.0

ARIMA
MAE 3.98 2.75 1.96

ARIMA
vs Baseline +44% +52% +60%

LSTM
MAE 3.95 2.61 1.98

LSTM
vs Baseline +45% +55% +60%

Random For-
est
MAE

4.14 3.23 1.97

Random For-
est
vs Baseline

+42% +44% +60%

Strategy 1
MAE 3.83 2.52 1.94

Strategy 2
MAE 3.85 2.57 1.94

Strategy 3
MAE 3.84 2.54 1.94

Best Strategy
vs Best Algo-
rithm

+3.13% +3.57% +1.03%

Table 1. Table captions should be placed below the table.

and there are no studies on its performance. In addition, the
literature regarding predictive auto-scaler is not very clear.
There is not a consensus on which metrics and algorithms to
use, probably because the workload is different in every case,
thus it needs different treatment. It has also been shown that
algorithms perform better in a type of workload and worse on
other. Since workload often follows different kind of patterns,
we propose a system that combines 3 well-known algorithms
with the purpose of improving the accuracy of each of them
alone.
The proposed system consists on:

• Collecting CPU metric(%) from the VMs which the work-
load we want to predict.

• Tune in the hyperparameters using the training and valida-
tion set on each of the chosen algorithms, namely ARIMA,
LSTM and Random Forest.

• Implement one of the strategies proposed. The chosen
strategy will determine which algorithm will forecast the
next timestep.

Since the chosen algorithms are different and might comple-
ment each other, we believe that this combination leads to a
better generalization for predicting future workload. The re-
sults have shown that the best combination performed 3.13%,
3.57% and 1.03% better in accuracy on the timeseries 1, 2
and 3 respectively, compared to the best algorithm in each of
the timeseries. The results have also shown that all proposed
combinations of algorithms lead to an increase in accuracy,

compared to the best algorithm in each of the timeseries. Al-
though the increases in accuracy seem low, small numbers in
big corporations like Amazon, Microsoft and Google make
a huge difference. Since the investment in using one algo-
rithm or our proposed system does not seem very disparate,
even small companies could reap the benefits of it. From this
results we can conclude that perhaps, it is a good idea to com-
bine different kind of algorithms to forecast Virtual Machine
Workload. However more research needs to be done.

Future Work
One of the major difficulties of this research was tuning in
the hyperparameters of the algorithms. There is a high prob-
ability that an experienced data scientist could improve the
models of the chosen algorithms, which could lead to an im-
provement of the proposed system.
In the future, some things can be tested. Different kind of
datasets with more data should provided a different perspec-
tive and maybe even better results, because algorithms like
deep learning tend to perform better with more data. A dif-
ferent metric or a combination of metrics might bring more
complexity, however it can also provide good results. Al-
though the combination of these algorithms and the respec-
tive strategies provided better results than the individual al-
gorithms, this does not mean that it is the best possible com-
bination or the best possible strategy. Therefore, different al-
gorithms could be grouped as also different strategies could
be tested in order to maximize the accuracy of the forecast.
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